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J. Phys. A: Math. Gen. 14 (1981) 1431-1438. Printed in Great Britain 

Displaced Fock representations of the canonical 
commutation relations 

Peter Basarab-Horwath 
Department of Mathematics, Bedford College, Regent’s Park, London NW1, England 

Received 3 September 1980 

Abstract. We define displaced Fock representations of the canonical commutation relations 
in an algebraic framework. Then we consider the problem of unitary implementability of 
the symmetry group which acts on the one-particle space of the theory. This action induces 
an automorphism of the algebra of the CCR and a condition is found to ensure that this 
automorphism be implemented by a unitary group representation in the space of the 
displaced Fock representation. Using this condition, we prove the existence of infinitely 
many displaced Fock representations in which the group automorphism is implemented by a 
unitary action. This is done for a specific choice of a subgroup of the PoincarC group, and for 
all cases of integer value of spin. 

1. Introduction 

Displaced Fock states have been studied in connection with the infrared problem 
(Roepstorff 1970) and in connection with the quantum theory of the massless field in 
two-dimensional space-time (Streater and Wilde 1970). These considerations are 
witness to the relevance of these ‘new’ types of representations of the canonical 
commutation relations (CCR) to quantum field theory. We formulate the problem in 
terms of the CCR algebra. For more details on this we refer the reader to the book by 
Emch (1972). 

For a complex vector space with an inner product A we can define an abstract 
structure 2l called the CCR algebra over A. With each element f of A we associate the 
(abstract) symbol W ( f ) .  Next we define the product of two such objects by the formula 

~ ( f )  . W(g)  = exp(Si M f ;  g)) - ~ ( f +  g )  

where f ,  g are in ,/U and ( f ;  g) denotes the inner product off and g in A. This relation is 
known as the Weyl form of the CCR. We define an adjoint operation on the symbols 
W ( f )  by W(f )*  = W(-f ) .  It follows from the multiplication formula that the symbols 
W ( f )  are unitary i.e. the adjoint W ( f ) *  of W ( f )  is the inverse of W ( f ) .  Then we define 
finite formal sums of the W ( f )  e.g. c1 W(f1)  + c z W ( f 2 )  +. . . + c, W ( f n )  where c, are 
complex numbers and f ,  are elements of A. The collection of these finite formal sums is 
denoted by !&,. On Qo we can define a norm 11 )I such that \lA\l< cc for A E &. By its 
very definition, 210 is a complex vector space and we complete it in the norm mentioned 
above, to obtain a Banach space. The norm also obeys the condition IIAA”I\= IlA1l2 
called the C* condition. The CCR algebra 2l over A is then the completion of a210 in the 
given norm. Segal(l959) proves that, up to an isomorphism, the algebra 2l is the only 
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one for which the CCR multiplication holds and for which the norm satisfies the Cx 
condition. 

A representation of the CCR algebra is a linear function ~:'21+8[%] from the 
algebra '21 to the bounded operators a(%) of some Hilbert space 2. In the represen- 
tation of the CCR of the free quantum field, we represent the field cp as an unbounded 
operator on the Fock space. Fock space has a unit vector 0 which is called the vacuum 
vector, and by applying all polynomials in the field cp and its adjoint c p * ,  it is possible to 
generate the whole of the Fock space. In the algebraic approach we are also able to 
construct a Hilbert space on which to represent the algebra '21 such that there exists a 
vacuum vector in the space. Given that '21 is the CCR algebra over A, a characteristic 
function E ( f )  on A defines a representation T of '21 on a Hilbert space 2, such that there 
exists a vector fl in 2 which is cyclic with respect to '21 i.e. the set { T ( A ) ~ : A  E '21} is 
dense in 2. Namely, any vector of 3? can be approximated to any degree of accuracy in 
the norm of %!by an element of the set. The Fock representation r0 of '21 is given by the 
characteristic function E ( f )  = exp(-i/lf//2). Writing WO for the Fock version of the W, 
we note that we have the identity (0, Wo(f)sZ) = exp(-$/jf\12) for allf E A. For details on 
this we refer the reader to theorem 7 p 239 of Emch (1972) and to the discussion on pp 
241-2 of this book. 

The Hilbert space completion of A in the norm induced by the inner product ( ;) is 
denoted by YL Ax denotes the algebraic dual of A i.e. the space of all linear functionals 
defined on A. We denote the duality relationship by (F; f )  where FE  Ax and f E A. It 
follows from the celebrated theorem of F Riesz (Akhiezer and Glazman 1966), that the 
space of continuous linear functionals on A can be identified with the Hilbert space 
completion, YL, of A. If F E Ax we define a new representation of the CCR algebra '21 by 
the formula W,(f) = exp(i Im(F;  f)) WO(f )  where f~ A. This is called a displaced 
Fock representation of the CCR. This then defines the framework in which we work. In 
the usual framework of quantum field theory the field cp corresponds to the Fock 
representation and the displaced Fock representation corresponds to cp + 77 where 77 is a 
c-number solution to the equation which cp satisfies. We now proceed to the intro- 
duction of the symmetry group. 

2. The problem of implementability 

In physics the space A mentioned in § 1 is called the one-particle space i.e. the space of 
wavefunctions. On this space a connected Lie group G, called the one-particle 
symmetry group, acts through a unitary group representation U ( g ) .  This unitary action 
induces an automorphism of the algebra a(g) through the formula 

a(g)[W(f) l= W ( U ( g ) f )  

where g E G. It can be shown that in the Fock representation of '21 there exists a unitary 
group representation V ( g )  of the group G on the Hilbert space 3? of the Fock 
representation which satisfies the relation 

dg) [Wo(f ) l=  V ( g )  Wdf) V ( g ) - l *  

This unitary representation is said to implement the action of the automorphism a ( g ) .  
The following question now arises: in a given displaced Fock representation WF, what is 
the condition on the linear functional F E A which ensures that the automorphism 
cr(g)[ W F ( f ) ]  = WF(U(g) f )  is implemented by the unitary group representation, V F ( g ) ,  



Displaced Fock representations of the CCR 1433 

say? In order to answer this question, we begin by writing Manuceau's lemma (see 
lemma 1, Roepstorff 1970): 

Manuceau's lemma. The two displaced Fock representations WF and W,, where F and 
S are in the algebraic dual Ax of A, are unitarily equivalent if and only if F - S E YC 
where YC is the Hilbert space completion of A. That is, there exists a unitary operator T 
on the space X such that W F ( f )  = T * W,(f) * T-' if and only if the condition on F and S 
is satisfied. 

From the unitary representation U on the one-particle space A we can obtain a 
representation U" of G on the space Ax  by exploiting the duality between Ax and A as 
follows: 

( U " ( g ) F ;  f) = ( F ;  U ( g ) f )  for all g EG,  

for all F in Ax  and for all f in 4. Since any element x of YC also defines a (continuous) 
linear functional on A (indeed we have the nested sequence A c Y C c  A") the 
representation U" also acts in the space YC, and it can be shown that the restriction of 
U" to YC coincides with the adjoint U" of U. We then have the following calculation 

a ( g ) [ W F ( f ) l  

= w F ( u ( g ) f )  = exp(i M F ;  U k ) f ) ) W o ( U ( g ) f )  

= exp(i Im(U"(g)F; f)) V ( g )  Wo(f)  V W 1  

= V ( g )  W U X , ? , , F ( f )  V ( g )  -I. 

It therefore follows from this calculation that the automorphism a ( g )  is unitarily 
implemented in the displaced Fock representation WF if and only if the mapping 
WF(f)- WUx,?,IF(f) is also implemented by a unitary group representation. We now 
take note of Manuceau's lemma and deduce that the mapping WF(f)- W U X , , , F ( ~ )  is 
implemented by a unitary operator if and only if we have the relation 

F - U"(g)F  E YC 

for all g E G. The function $ ( g )  = F - U"(g)F  from the group G with values in YC is an 
example of a 1 cocycle of G with coefficients in X. Our argument has led us to associate 
with each displaced Fock representation WF of the CCR algebra '21 over A a 1 cocycle of 
G with coefficients in YC, the Hilbert space completion of the one-particle space A. From 
a mathematical point of view it is of interest to ask whether or not this association is a 
bijection i.e. if 4 ( g )  is a 1 cocycle of the form $(g) = F - U " ( g ) F  E YC where F E  A", 
does this give rise to a displaced Fock representation in which the group G can be 
implemented by a unitary group representation? This is certainly the case, providing 
that all G-invariant linear functionals vanish on A. We do not prove this statement, but 
refer the reader to the argument given in Basarab-Horwath er a1 (1979). Now we are in 
a position to formulate the first result. 

Theorem 1. If all G-invariant functionals in A", the algebraic dual of A, vanish on A, 
then there is a one-to-one correspondence between (unitary equivalence classes of) 
displaced Fock representations of the CCR algebra g7 in which the mapping W,(f)- 
WF( U ( g ) )  is implemented by a unitary group representation V F ( g ) ,  and 1 cocycles of G 
with coefficients in YC7 of the form F - U"(g)F  E YC with F E A". 
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Remark. The qualification about unitary equivalence classes is a necessary mathema- 
tical remark. This is because two representations of the CCR are considered to be 'the 
same' when there is a unitary operator which connects them as in Manuceau's lemma. 
Further, if a displaced Fock representation is equivalent to the Fock representation, we 
say that it is trivial. 

This theorem allows us to consider any relevant symmetry group. In this paper we 
are concerned with that subgroup of the PoincarC group which consists of ( a )  the 
space-time translations, ( b  j the rotations about the three axis, and (c) the Lorentz boost 
along the three axis. Unless a remark to the contrary is made, we shall call this group G. 

3. Cocycles for spin zero 

In this section we treat the spin zero representation of our group G and we later modify 
our result to all other integer spins. We construct an example of a 1 cocycle of G with 
coefficients in the space YC = L2(R3 ,  d3p/Ipl). This cocyck is not trivial in the sense that 
the displaced Fock representation to which it gives rise is not equivalent to the Fock 
representation. To verify this, we note that the Fock representation corresponds to the 
linear functional 0, so that the displaced Fock representation WF is equivalent to the 
Fock representation if and only if FE  YC. This is a direct consequence of Manuceau's 
lemma. We use this criterion to prove the non-triviality of the cocycle, and hence of the 
resulting displaced Fock representation. 

Before we begin the construction, we note a lemma which is useful in the ensuing 
calculation. Its proof is given in the appendix. 

Lemma 2. Suppose that V is a representation of the group of real numbers R in the 
complex linear space A, whose completion in the inner product norm is YC. The two 
following conditions are equivalent. 

(i) F- V"(A)FE YC for F EA" and for all A ER.  
(ii) Given any e > 0 then F - V"(A)F E YC for FE  A" and for all A E R such that 

/ A  1 < e where V" is the dual of V, acting in A", the algebraic dual of A. This lemma is 
useful in avoiding the differential methods of Pinczon and Simon (1975). 

Our Hilbert space is YC= L2(R3 ,  d3p/lp() and the representation of G which we 
use is the restriction to G of the usual representation of the PoincarC group CPy in the 
space YC. 

We now define a sequence of cylinders {J,,} each cylinder having its axis along the 
three axis. 

Here { E , }  is a sequence defined by recursion as follows: 

& l = l  and en+ l  = exp(-n )e,,. 

3 2 2  2 J,, = { p  E R  : E , + ~  s p 3 s e ,  andp  = P I  + p ;   se,,^). 

2 

The function fn is defined on the cylinder J, by 

= 1 if p E J,, 

f n ( p ) = O  if pk J,, . 
The norm of each function f,, in the Hilbert space YC is finite: \lf,,lI < CO. The function 

=f&',,il is a unit vector in YC. Now because the cylinders J,, only meet in a 
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two-dimensional surface, it follows that the sequence {fz} is a set of oithonormal 
functions in YL We now define the orthogonal direct sum of these functions: f = f,,. 

This is a well defined function and it can be shown that pis a generalised function in 
the space of tempered distributions Y'(R3). However, the function fAis not in the Hilbert 
space llfi12 = ~ ? = 1  l f , I l 2  = 00. 

By abuse of notation, we use the same symbol for the represenltation oCG on f as for 
the representation of G in the space Yl. We shall prove that f-- U ( g ) f c  YC for any 
element g of G. 

The letter R will denote a rotation about the three axis. It follows from an 
elementary calculation, using the duality relationship, that the action U ( g )  on f is 
defined by the formula U ( g ) f ( p )  = f ( g p ) .  Using this, it follows that U ( R ) f n  = f , ,  for 
each f,, whence we have that f -  U ( R ) ~ E  YL This is because the cylinders are invariant 
under rotations about the three axis. Next we deal with the Lorentz boosts along the 
three axis. Because these form a one-parameter group, we write U(A)  for the unitary 
representation of the matrix 

'coshA 0 0 sinhh j 1  0 1  1 0  : I *  
sinhh 0 0 coshh 

The parameter A ranges through the whole of the real numbers, so that U ( A )  is a 
representation of the real numbers. Thus we may use our lemma 2, after having chosen 
a suitable interval about zero. In connection with this, we remark that U ( A ) f - f €  YL is 
equivalent to U ( - h ) f - f ~  YL. Combining all these remarks, we are able to prove the 
cocycle property of f for the Lorentz boosts in the three direction by proving f -  
U ( h ) f * ~  Yl for A > 0, where A is chosen suitably. 

We have the following calculation: 

Thus our first task is to investigate the term 
calculate the overlap of f ,  with U(A)fm. The action of U(A)  on f ,  is 

(f, , ,  U(A)fAT), namely, we must 

U ( A ) f n ( p )  = f n ( p i ,  P z ,  p3 cosh A + /PI sinh A )  

where A > O .  Writing E ; - + I  for &,,+I cosh A +(&:+I + s  ) sinh A where O s s  < & , + I  

and writing E ; + ~  = E , + ~  cosh A + ( E , + ~  +t2)1'2sinh A where 0 s  t S &,+I, it is not 
difficult to see that if 0 s A < 0.3 then E ; + ~  < E, and E ; + Z  < E, ,+~ .  This means that we are 
able to choose A > 0 so that the cylinder J,, overlaps only with a part of itself after being 
shifted by the boost, and a part of the cylinder J,+1 which has also been shifted by the 
boost. From this we can deduce that 

2 1/2 

2 

: (L, U(A)f") 
m = l  

J o  J d + l  
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> 1 - 2 ~ / ' " + '  s d S j f n + '  dp3(pt 
E n t Z  &.+I 

It now follows that 
F h + l  

if̂- U(A)f1I2s f 2~ J'"" s ds dp3(p: +s2)-1'21)fn//-2. 
n = l  E,,-*  'En+I 

After performing some tricky integration, it is possible to show that 
2 2  

I l f n I I 2 ~ T E n + 1 ( n  -0.5) 

and it is also possible to show that 

J € " + Z  J & + l  

where h ( A )  < 00 for all A E iw. Hence, combining all this work, we have that 

Therefore f satisfies f -  U ( h ) f ~  7' for the Lorentz boosts along the three directions. 
The space-time translations are represented by exp(-ipa) where p a  = ( p i  la1 - p  a 

and the vector ( lp i ,  pl, p 2 ,  p 3 )  is the generator of space-time translations. Using the 
calculations 

for j = 1, 2, 3, for all m b 1 and 

d3P 
1Pl 

P I -- II f n  / 1 r 2  = c < 02 

for all m 5 1, we deduce that 

E 7C p - elc.' f 

so that the translations obey the same cocycle relation. This then completes the 
calculations for the component subgroups of G, and we now have to show that 
f -  U ( g ) f l ~  YC where g is any element of G. We note that any element in our group is 
given by a translation in space-time and the product of a Lorentz boost in the three 
direction with a rotation about the three axis. We write g = (a ,  LR)  where R is the 
rotation, L is the boost and is the space-time translation. Thus U ( g ) =  
e'""U(L) U ( R )  so that we have 

f - u(g)fl= f - i'"" U ( L )  U ( R  ) f  
- p - e l i k -  - W L ) f  
- - f- elcr,f^+ el"-[f- U ( L ) ~ I  

where we have used the rotation invariance of f  The two terms in the last expression 
are both included in the Hilbert space YC, as the previous calculations have shown. 
Therefore, we have proved that the functionfsatisfies the cocycle condition f- U ( g ) f ~  
YC for any element of our group G. A small calculation shows that any other boost, or 
rotation about any other axis does not give us the required condition on f So our group 
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G is the largest subgroup of the PoincarC group for which f satisfies the cocycle 
condition. 

Now suppose that c is any complex number. It is easy to see that f l -  c~E’YL if c # 1, 
so that the displaced Fock state defined byflis not unitarily equivalent to that defined by 
cf In this way we generate a continuous infinity of displaced Fock representations of 
the CCR in which the group G is implemented by a unitary group representation. We 
now go to the case of other values of spin. 

4. The case of non-zero spin 

We adopt, for the purpose of easier calculation, the convenient formalism of Lomont 
and Moses (1967) and Guillot and Petit (1966). In this formalism the group is 
represented on the space YL, the space which is used for the case of spin equal to zero. 
The Lie algebra representative of the generator of rotations about the three axis for 
spin = S is given in this formalism by 

J$ = -i(p x v), + s 
or, in spherical polar coordinates, by J $  = - ia /aq  + S .  Now -i(p xV)3 is the third 
component of the vector operator -i(p x V), and is the generator of the rotations about 
the three axis for spin S = 0, so that -i(p X V), annihilates f l  i.e. -i(p X V)3fl= 0. 

We can write each f f l  in spherical polar coordinates, in terms of the Heaviside 
function 

f n ( p ) = H ( E n  - 1 1 1  cos ~ ) ~ ( l p l  cos 6 - e f l + d ~ ( ~ , + 1 - I p (  sin 0).  

Writing Fo for the polar form o f f  it follows that 

Fs(lP/, Q, 0)=e-iSqFo(lP19 cp, 0)  

is annihilated by J: i.e. 

s 8F.S J3Fs = -i-+ Sq = 0. 
acp 

Now a rotation about the three axis by an amount cp is given by the operator exp(iJ$cp) 
so that Fs -exp(iJ:cp)Fs = 0. Since we can write the rotation about the three axis as 
Us(cp) = exp(iJ&) for spin = S,  we are then able to write Fs - Us(q)Fs  = 0 E YL. In the 
case of sp in=S  the representation of the boost in the three direction and the 
representation of the space-time translations remain the same as in the case of spin 
equal to zero. Thus, writing U s ( g )  for the representation of any element g in G when 
spin = S,  we have FS - Us(g)Fs E 7L for all g E G. 

Again noting that if c # 1, then FS - C F S ~  YL so that the displaced Fock represen- 
tation of the CCR generated by CFS is not unitarily equivalent to that generated by Fs. 
We now have the following. 

Theorem 3. For any given value of integer spin, there exist infinitely many unitarily 
inequivalent, non-trivial displaced Fock representations of the CCR algebra a, in which 
the group G is implemented by a unitary group representation. 

Remark 1. Roepstorff (1970) considers the case of spin S = 1 and shows that there exist 
displaced Fock representations of the CCR in which the space-time translations are 
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implemented by a unitary group representation. We have improved this result by 
including the rotations about the three axis and the Lorenlz boosts in this direction. We 
have also extended this to arbitrary integer spin. It is also possible to show that the 
resulting representation of G on the algebra of the CCR satisfies the positivity of the 
energy condition. 

Remurk 2. By using the CCR relation, it can be shown that the operator VFs(g)= 
Vo(g) Wo[Us(g)Fs -Fs]  implements the action of G in the displaced Fock represen- 
tation W,,, where V o ( g )  implements the action of the group in the Fock representation. 
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Appendix. Proof of lemma 2 

That (i) implies (ii) is quite clear. The converse is proved as follows. Writing $ ( A )  = 
F - V"(A)F we obtain 

$ ( A ) =  V"(iA)[V"(-$A)F- V"($A)F] 

= V*($A)[$($A) -$(--;A)]. 

Continuing in this way, we arrive at 

$ ( A )  = A(A)$(A/2") +B(A)$( -A /2n)  for n>O 

where A(A) and B(A) are bounded operators in YL V* is the restriction of T I "  to X ,  and 
this restriction coincides with the qdjoint of V. Given a fixed E > 0 and a A E [w it is 
always possible to find an n > 0 for which IA 1/2" < E and this then shows that if $ ( t )  E Yi 
for /ti < E then $ ( t )  E YC for all It1 < E .  So the lemma is proved. 
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